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Microencapsulated Linear Polymers: “Soluble” Heterogeneous Catalysts
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Catalysts are often the most expensive component of a reaction
and are frequently difficult to separate from the product. A wide
variety of solid supports are used to facilitate catalyst removal and &
recycling!~8 Cross-linked polymers are especially flexible supports
for organo-catalysts and ligands because myriad methods are'
available for covalent attachmefit-14 The high surface area and I
porous structure allow small molecules to rapidly diffuse in and
out of the polymeric supporf8:16 The catalysts on the support,
conversely, diffuse very little and experience a different solvation
environment than homogeneous catalysts, often rendering them less|
selective and less active, unless painstakingly optimiZ&d.

It would be desirable to have a system that combines the ease
of cross-linked polymers with the catalytic activity of homogeneous
catalysts. Inspired by recent work of egnd others?-1we propose
that catalysts attached to soluble polymers entrapped within 3 . . ;
microcapsules will yield higher activities and be more readily F,gurel SEM images of microcapsules contammg LPSDMAP-B.are
tunable than catalysts attached to cross-linked ré&inghis paper, made with 5, 7, 13, and 17% PMPPI, respectively. SEM images and size
we provide the first example of catalysis using encapsulated linear distribution data are available in Supporting Information.
polymer—catalyst conjugates. This new approach not only provides
a more active catalyst than that supported on cross-linked-

Scheme 1. Synthesis of DMAP Polymer and Microcapsules

polystyrene but also allows for simpler tuning. > AN

The model reaction we investigated is aNL-dimethylamino)- O O
pyridine (DMAP)-catalyzed acylation. DMAP is an ideal model AIBN, Styrene PMPPI, CHClg
because it has been studied as a small molé€dleon linear SN 60°C N7 o PYA H2O

. . . . nterfacial Polymerization

polymers?2-24 inorganic support3>-2” and insoluble polymeric SN @
support$:26-33 DMAP is also extremely sensitive to its electronic N Sy
environment, as demonstrated by the extensive linker and backbone 4 2

changes required to optimize its activity on polymeric supp&ié*
In contrast, we show that catalytic microencapsulated polymers can
be optimized with minimal synthetic modification.

Table 1. Relative Rates of Acylation of sec-Phenethyl Alcohol in
the Presence of 0.5 mol % of Catalyst

The microencapsulated polymer is synthesized in two Sfeps. OH ’}CEZE(Q 11 :(3)
The DMAP-madified linear polystyrene (LPSDMAR) is formed
by a copolymerization of a DMAP-modified monomet) (and (j/K THF ©)\
styrene (Scheme 1). LPSDMAP is then dissolved in chloroform Catalyst ~0.5%
along with poly(methylene[polyphenyl]isocyanate) (PMPPI). This catalyst Ko conversion
organic phase is then dispersed in an aqueous phase containing DMAP 92 99%
poly(vinyl alcohol) as a stabilizer. The interfacial polymerization BMAP 4.2 98%
is initiated with tetraethylenepentamine (TEPA). Once washed and ~ LPSDMAP @) 5.1 98%
dried, the capsules are isolated as a free-flowing solid (Figure 1).  PSDMAP 10 89%

Acylation of seephenethyl alcohol with acetic anhydride in Egos’gm'Ang LPSDMAP capsiile 09

} capsule 3.2 91%

tetrahydrofuran (THF) was used as the test reaction. The capsules | pspmAP capsule 28 8496
were compared to a commercially available (dimethylamino)-
pyridine on polystyreneo-divinylbenzene (PSDMAP), as well as 2 PMPPI (7%), THF wash? PMPPI (5%), no THF wasif.PMPPI (5%),
LPSDMAP @), and the small molecule model, B-penzylN- THF wash @ Backgroundke = 0.007. The reaction rates were measured

. . - using the method of initial rate8.The THF washing may expose amines
methyl)aminopyridine (BMAP) (Table 1). As shown in Table 1, n the shell that partially hydrolyze the acetic anhydride.

the rate of acylation is cut in half between DMAP and its benzyl

derivatives (BMAP and LPSDMAP). BMAP’s rate is then de- rounds of recycling, we see little change in rate or reaction yield
creased by another factor of 4 when attached to an insoluble support(99, 97, and 94%).

(PSDMAP). The initial microcapsule samples gave rates similar ~ The exciting feature of microcapsules is that a number of factors
to those for PSDMAP (Table 1). The encapsulated catalyst is simply can be changed to create capsules with a desired strength,
filtered off after the reaction is complete and is reusable. In three permeability, or size, without changing the interior polyrffein
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Figure 2. Comparison of rates of LPSDMAR) and PSDMAP (Fluka, 3
mmol/g) to THF-washed capsules made with varied PMPPI loadirg (5
17%).

PSDMAP 17T%PMPPl 13%PMPPI T PMPPI 5% PMPPL

Scheme 2. Model of DMAP Capsule Catalysis

Paolymer Diffusion

this case, we achieved the optimized rate (Table 1) of the
encapsulated DMAP catalyst by varying the wall thickness of the
microcapsules. Wall composition was varied by changing PMPPI
concentration in the emulsion (Figure 1). As the amount of PMPPI
is increased, the walls grow thicker, which causes the walls to
collapse differently. Walls that are thin crumple like paper (Figure
1A,B), while thicker walls fold less when dried (Figure 1C,By

varying only the encapsulation procedure, a more axttatalyst

is created As seen in Figure 2, the catalytic activity of the capsules

reagent diffusion and mixing. This approach represents a new
strategy for creating heterogeneous catalysts.
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